
Custom Text Weighting on Law Area Classification
TxMM 2018

R.M.W. Kluge
Radboud University

s4388267
ruben.kluge@student.ru.nl

ABSTRACT
Categorizing law documents into their corresponding categories
manually is an exhaustive task. Text classification is not new; there
are several studies showing that Support Vector Machines (SVMs)
with TF-IDF and Naive Bayes approaches do a decent job in text
classification. By looking at parts of the law documents, we try to
improve classification scores. Because we know that introductory
text of dutch law documents of Rechtspraak.nl contain valuable in-
formation that is relevant for classification, we investigate whether
applying extra (heavier) weighting to this introductory text will
improve classification performance. Each document can have mul-
tiple law categories attached. Because SVMs cannot assign multiple
labels (multi-label classification) out of the box, a One-Versus-Rest
(OVR) scheme is used. This also solves the problem with over-
lapping categories. This approach seems to improve performance
(F1-score) significantly, but with a very small percentage (~0.22%).

KEYWORDS
Law Classification, Text Classification, Bag-of-Words, TF-IDF, Lin-
ear SVM, One-Versus-Rest, Text Weighting, Supervised Learning

1 INTRODUCTION
With increasingly growing court cases and different resources to
grab information from, it is a valuable addition to have these re-
sources automatically classified in their corresponding categories.
For this project we got assigned a classification problem of law
documents from Legal Intelligence. Legal Intelligence wants to clas-
sify law documents into categories by classifying on textual data.
The data that is being used is public property of the dutch Court
(Rechtspraak.nl), and consists of lawsuits and their verdicts. Each
document has been assigned one or more law category (labels),
and it is our task to assign these documents their corresponding
labels. Although the documents consists of XML data with multi-
ple information fields, we should solely use the document text as
our information source. This paper will go into the details of how
we can improve the text classification by amplifying parts of the
document we think that are relevant.

2 RESEARCH QUESTION
After analyzing some documents, it becomes clear that nearly every
document starts with crucial information that could determine the
law area of that particular document. Information regarding the
location of the sitting, which tribunal it addresses, but sometimes
also small summaries of previous sittings seems to be listed at the
introductory text of each document. It would be interesting to see
whether this information contributes more to classification than

the rest of the text. Bruninghaus [2] already suggested to focus on
smaller sentences of the document instead of classifying complete
documents, which will add knowledge during parsing of documents.
Our research question is thus:

Would heavier weighting on introduction text improve the classifi-
cation score of an SVM algorithm on dutch law category classification?

2.0.1 Hypothesis. We test this research question with a one-
sided hypothesis, which will show whether our experimental con-
dition has a significant higher mean F1-score than our baseline
condition:

H0 : µbaseline ≥ µexper iment
Ha : µbaseline < µexper iment

3 METHODS
We choose to tackle this problem with a bag-of-words unigram
approach. This means that every word in the text is considered to be
a feature in the classifier. Bigram approaches were also considered,
but due to limitations in computing resources this could not be
tested 1.

Research regarding classification of law documents have already
been done with Naive Bayes and C4.5 approaches [9]. However,
SVM seems to outperform Naive Bayes and Neural Networks (per-
ceptron and three-layers neural networks including a hidden layer)
on category classification [4]. Further investigation of neural net-
works found that these neural networks could be superior towards
SVM approaches [7]. We still stick to SVM because of its simplicity
and scalability.

The dataset containsmulti-class labels, where each document can
be assigned to multiple labels. Because standard SVM approaches
are not multi-class, and are not able to assign multiple labels, we
choose the One-Versus-Rest (OVR) approach. This means that for
each class that can be assigned, there is a need for a separate SVM
classifier. Later on we will discuss this pipeline in depth.

The distribution of categories in the dataset can be found in
Figure 1 and Table 1. In this figure, law areas with less than 150
entries are left out for ease of visualization. The left out law ar-
eas are: Internationaal privaatrecht, Bestuursstrafrecht, Intellectueel-
eigendomsrecht, Goederenrecht, Aanbestedingsrecht, Europees civiel
recht, Mededingingsrecht, Europees bestuursrecht, Strafprocesrecht,
Internationaal publiekrecht, Internationaal strafrecht, Penitentiair
strafrecht and Europees strafrecht. For each of the 29 law categories,
it is the task of the classifier to assign the correct labels to the
documents. We see that this dataset is highly unbalanced, and that
most documents contain the Bestuursrecht label.

1A bug between Joblib & Pickle made multiprocessing on computing clusters with
large datasets impossible.



RU-TxMM, 2018 R.M.W. Kluge

Table 1: Data distribution

Law area Frequency
Civiel recht 74444
Verbintenissenrecht 495
Burgerlijk procesrecht 282
Bestuursrecht 170266
Socialezekerheidsrecht 22962
Strafrecht 39635
Materieel strafrecht 157
Vreemdelingenrecht 14456
Belastingrecht 36697
Omgevingsrecht 7601
Bestuursprocesrecht 232
Ambtenarenrecht 3586
Personen- en familierecht 12155
Insolventierecht 1448
Ondernemingsrecht 346
Arbeidsrecht 709

For our experiment, we consider the first 10% of the text to con-
tain introductory content. Our baseline are the original documents,
whereas our experimental condition will duplicate the introductory
text two times.

Figure 1: Data distribution

3.1 Pipeline
The pipeline for this experiment consists mostly of preprocess-
ing and preparation steps in order to fulfill the promise of multi-
class and multi-label classification. All steps (except preprocessing)
are functions of the scikit-learn python package [8]. The current
pipeline is as follows:

(1) Preprocessing
(2) CountVectorizer
(3) TF-IDF Transformer
(4) Support Vector Machine (SVM)
(5) One-VS-Rest Classifier
The experimental manipulation regarding weighting happens

after the first Preprocessing step, as all documents get transformed
and normalized in some way in later steps.

3.2 Preprocessing
The dataset that was given consists of 1.8GB of XML files (~290.000).
Each file corresponds to one entry in the rechtspraak.nl database.
The XML files contain a lot of extra metadata. Because we want
to classify on just textual data, this other metadata is excluded.
The metadata parameters we are interested in are the identifiers
Uitspraak and Rechtsgebied. These identifiers correspond to our
data and labels respectively.

It is noted that some documents do not even contain the label
field Rechtsgebied. These documents are being discarded, as there
are no other indicators that could determine the documents’ law
area for supervised learning. Other problems with the dataset are
documents that do not have a subject, or faulty XML tags which
causes corrupt data. These documents are discarded as well.

Other preprocessing methods such as analyzing Part of Speech
(PoS) tags and lemmatization have been considered. PoS tagging
allows us to have a semantic representation of words, which will
help in classification. We have investigated FrogNLP [1] to process
this. FrogNLP is a widely used "integration of memory-based nat-
ural language processing (NLP)" [1] for the Dutch language. The
Chunker of FrogNLP is an intermediate step between PoS tagging
and full parsing. This enables us to extract specific sentence infor-
mation such as B-NP, I-NP, O. PoS tags like O could immediately
be discarded, as these are symbols. The problem that occurs is that
scikit’s bag of words approach does not allow multiple features
per word. This is because the vectorizers of scikit (DictVectorizer,
FeatureHasher, CountVectorizer) do not account for bindings of
multiple features (ex: text and PoS tags). A solution could be to
flatten these features into one, so multiple features (’This, ’B-NP’)
could be flattened to one feature (’This_B-NP’). This way, we will
still have the information regarding the semantics of words in our
bag-of-words. For example, the dutch word ’sla’ could mean ’sla_B-
VP’ (punching) or ’sla_B-NP’ (salad). Unfortunately, FrogNLP takes
around a minute per document. With 285.000 documents in the
dataset to be analyzed, this is not a feasible option.

3.3 CountVectorizer
The second step in the pipeline is the CountVectorizer. This function
converts documents into matrix representations. Each vector entry
in the matrix is determined by splitting a document into words. The
documents are splitted by the CountVectorizer by selecting strings
that have two or more alphanumeric characters, which means that
special characters are being ignored. We also make sure that all
words are transformed into lowercase format. This matrix forms
the foundation of our bag-of-words model.

3.4 TF-IDF Transformer
The third step in the pipeline is the TfidfTransformer. Using term
frequency-inverse document frequency (TF-IDF) with a bag-of-
word approach is a widely used practice in NLP [11]. TF-IDF is a
way to weight text by taking into account the word distribution
in the corpus. A word gets a higher TF-IDF value when a word
appears often in a document (term frequency), but less often in the
document corpus (inverse document frequency). Words that are
occurring often in both documents and the document corpus (ex:
stopping words) gets assigned less weight. The advantage of this is



Custom Text Weighting on Law Area Classification RU-TxMM, 2018

that less informative words get less weight, whereas less occurring
informative words gets boosted weights.

The TfidfTransformer takes a word frequency matrix as input
and will calculate its TF-IDF representation using weights. Default
L2 normalization is applied to normalize word vectors, and Laplace
smoothing is applied to prevent ’dividing by zero’ errors.

Other approaches that include the usage of the newer BM25 in-
stead of TF-IDF have been considered. However, [6] concludes that
term frequency transformations such as BM25 show no remarkable
effect on classification, and that an SVM classifier seemed ’state of
the art in this domain’.

3.5 SVM & One-Versus-Rest (OVR)
The classifier where we test our custom weighting with is the
Support Vector Machine (SVM). Because our dataset is so large, we
take an SVM that easily scales with the amount of data. As stated
in [4], linear SVMs are fast in both training and evaluation, and
are accurate text classifiers. Also, linear SVMs scale better to large
amounts of data.

Because SVMs are binary classifiers, we utilize a One-Versus-
Rest classifier scheme to perform multi-label classification (also
called the binary relevance method). This means that for each class,
a separate SVM is produced to solve that particular class. In our
dataset this means the scaffolding of 29 SVMs through an OVR
scheme. Another reason to utilize a OVR scheme is because there
can be overlapping between categories. When using only one SVM,
the decision boundaries can be influenced by this overlapping of
categories, which results in lower classification scores.

SVM supports the same properties for classifying text as our
bag-of-words approach. This approach also has a high dimensional
feature space, few irrelevant features and sparse instance vectors
(most documents have a vector that only a few entries that are
not zero) [5]. Also, "SVMs eliminate the need for feature selection,
making the application of text categorization considerably easier".
The need for feature selection does not apply to SVM text classifi-
cation techniques. It has been investigated that a classifier which
only uses words that are the least to contribute to the classification
performance, still have a better performance than when performing
a random action (chance level) [5].

4 RESULTS
For each experiment that is run, 300 stratified crossvalidations are
performed against each dataset, with a test size of 30%. For evalua-
tion of scores, an F1-weighted measure is used. F1-weighted calcu-
lates the metrics for each label, and averages this by considering
the amount of support per class. Classes with lower support have
less influence on the averaged F1-score. The F1-score of the base-
line experiment is 0.96055, where the F1-score of the experimental
condition is 0.96283. The increase of the experimental condition in
performance is minimal (~0.22% increase), but because we have 300
crossvalidations to support these results, this difference can be big
enough to be significant.

Table 2 shows us the individual class results for the experimental
condition. Classes with less than 20 supporting queries are left out
in the table for ease of visualization. Most of these left out classes
have an F1-score of 0.00, because there is too less training data

available for those classes. It is observed that classes that do have
many training samples and thus high support generally have a
better performances.

4.1 Significance
We are testing significance on performances. Because a performance
score can never exceed 100%, this data is not normally distributed. A
widely used statistical test that is being used for classification results
is the Wilcoxon signed-rank test [10]. This is a non-parametric test
which does not assume variance homogeneity. The samples of our
results are paired, because the pseudorandomness factor is used
to ’randomly’ generate the splits. This causes every run of 300
crossvalidations to come up with the same ’random’ indexes of
splits after every re-run.

TheWilcoxon signed-rank test calculates a p-value of < 2.2e−16.
This observation rejects our null hypothesis (p-value < 0.05); the
mean F1-score of the baseline condition is significantly lower than
the mean F1-score of the experimental condition.

Figure 2: Distribution of results

5 CONCLUSION & DISCUSSION
Weighting introduction texts heavier on dutch law documents show
significantly better results in comparison to the normal weights
(baseline). However, these mean differences are very small (~0.22%
increase in performance, to an F1-score of 0.9628). There is much
more benefit to be gained from other measures like Part of Speech
tagging or semantic analysis.

Upon analysis of results, we found out that some classes are
superclasses of other classes. It was found that the class label Bestu-
ursrecht is a superclass of all the classes Socialezekerheidsrecht,
Vreemdelingenrecht, Belastingrecht, Omgevingsrecht, Bestuurspro-
cesrecht, Ambtenarenrecht, Bestuursstrafrecht and Europees bestu-
ursrecht. In Table 3, we can see that the frequency of every law area
corresponds with the frequencies in Table 1, which suggests that
Bestuursrecht is a superclass.

Because we did not have any knowledge about law areas, we
assumed that each label was an independent law area with no
hierarchy. However, because ofmulti-label classification there exists
a separate classifier for each class, so overlap between super- and
subclasses do not cause interference in performances.

Another point that should be made is that we do not check
whether each document gets assigned all of their labels. Instead,



RU-TxMM, 2018 R.M.W. Kluge

Table 2: Individual class results

Category Precision Recall F1-score Support
Aanbestedingsrecht 0.00 0.00 0.00 28
Ambtenarenrecht 0.70 0.64 0.67 1034
Arbeidsrecht 0.75 0.20 0.31 208
Belastingrecht 0.99 0.99 0.99 11095
Bestuursprocesrecht 1.00 0.03 0.06 68
Bestuursrecht 0.99 1.00 1.00 51128
Bestuursstrafrecht 1.00 0.15 0.26 33
Burgerlijk procesrecht 0.40 0.07 0.12 89
Civiel recht 1.00 0.98 0.99 22232
Insolventierecht 0.81 0.66 0.73 441
Intellectueel-eigendomsrecht 0.50 0.08 0.13 26
Internationaal privaatrecht 0.00 0.00 0.00 24
Materieel strafrecht 0.00 0.00 0.00 38
Omgevingsrecht 0.79 0.72 0.75 2315
Ondernemingsrecht 0.90 0.69 0.78 91
Personen- en familierecht 0.87 0.91 0.89 3643
Socialezekerheidsrecht 0.82 0.74 0.78 6930
Strafrecht 0.99 0.99 0.99 11940
Verbintenissenrecht 0.25 0.01 0.01 145
Vreemdelingenrecht 0.96 0.98 0.97 4358
avg / total 0.97 0.96 0.96 115917

Table 3: Documents containing the label ’Bestuursrecht’

Law area Frequency
Bestuursrecht 170266
Socialezekerheidsrecht 22962
Vreemdelingenrecht 14456
Belastingrecht 36697
Omgevingsrecht 7601
Bestuursprocesrecht 232
Ambtenarenrecht 3586
Bestuursstrafrecht 123
Europees bestuursrecht 21

performance is calculated whether an individual class belongs to a
document correctly.

6 FUTUREWORK
In the future, we can look at different tests in order to get greater
performance improvements. These tests can include testing with
different (heavier) weights on introductory text, or tests to define
and extract introductory text with more precision.

A next step could be to improve other algorithms like Daniels
[3] with our approach. Daniels describes a method to extract se-
mantic information from law documents themselves. By providing
these algorithms with prior knowledge like law category, we can
influence the extraction of semantics based on our predicted law
category.

REFERENCES
[1] Antal van den Bosch, Bertjan Busser, Sander Canisius, and Walter Daelemans.

2007. An efficient memory-based morphosyntactic tagger and parser for Dutch.
LOT Occasional Series 7 (2007), 191–206.

[2] Stefanie Brüninghaus and Kevin D Ashley. 1999. Toward adding knowledge to
learning algorithms for indexing legal cases. In Proceedings of the 7th international

conference on Artificial intelligence and law. ACM, 9–17.
[3] Jody J Daniels and Edwina L Rissland. 1997. Finding legally relevant passages

in case opinions. In Proceedings of the 6th international conference on Artificial
intelligence and law. ACM, 39–46.

[4] Susan Dumais, John Platt, David Heckerman, andMehran Sahami. 1998. Inductive
learning algorithms and representations for text categorization. In Proceedings of
the seventh international conference on Information and knowledge management.
ACM, 148–155.

[5] Thorsten Joachims. 1998. Text categorization with support vector machines:
Learning with many relevant features. Machine learning: ECML-98 (1998), 137–
142.

[6] Sang-Bum Kim, Kyoung-Soo Han, Hae-Chang Rim, and Sung HyonMyaeng. 2006.
Some effective techniques for naive bayes text classification. IEEE transactions
on knowledge and data engineering 18, 11 (2006), 1457–1466.

[7] Larry M Manevitz and Malik Yousef. 2001. One-class SVMs for document classi-
fication. Journal of Machine Learning Research 2, Dec (2001), 139–154.

[8] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12, Oct (2011), 2825–2830.

[9] Paul Thompson. 2001. Automatic categorization of case law. In Proceedings of
the 8th international conference on Artificial intelligence and law. ACM, 70–77.

[10] RF Woolson. 2008. Wilcoxon Signed-Rank Test. Wiley encyclopedia of clinical
trials (2008).

[11] Jun Yang, Yu-Gang Jiang, Alexander G Hauptmann, and Chong-Wah Ngo. 2007.
Evaluating bag-of-visual-words representations in scene classification. In Pro-
ceedings of the international workshop on Workshop on multimedia information
retrieval. ACM, 197–206.


	Abstract
	1 Introduction
	2 Research Question
	3 Methods
	3.1 Pipeline
	3.2 Preprocessing
	3.3 CountVectorizer
	3.4 TF-IDF Transformer
	3.5 SVM & One-Versus-Rest (OVR)

	4 Results
	4.1 Significance

	5 Conclusion & Discussion
	6 Future Work
	References

